On weakly convex star-shaped polyhedra

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On weakly convex star-shaped polyhedra

Weakly convex polyhedra which are star-shaped with respect to one of their vertices are infinitesimally rigid. This is a partial answer to the question whether every decomposable weakly convex polyhedron is infinitesimally rigid. The proof uses a recent result of Izmestiev on the geometry of convex caps.

متن کامل

On the infinitesimal rigidity of weakly convex polyhedra

The main motivation here is a question: whether any polyhedron which can be subdivided into convex pieces without adding a vertex, and which has the same vertices as a convex polyhedron, is infinitesimally rigid. We prove that it is indeed the case for two classes of polyhedra: those obtained from a convex polyhedron by “denting” at most two edges at a common vertex, and suspensions with a natu...

متن کامل

Star Unfolding Convex Polyhedra via Quasigeodesic Loops

We extend the notion of star unfolding to be based on a quasigeodesic loop Q rather than on a point. This gives a new general method to unfold the surface of any convex polyhedron P to a simple (nonoverlapping) planar polygon: cut along one shortest path from each vertex of P to Q, and cut all but one segment of Q.

متن کامل

On the number of star-shaped polygons and polyhedra

We show that the maximum number of strictly star-shaped polygons through a given set of n points in the plane is (n). Our proof is constructive, i.e. we supply a construction which yields the stated number of polygons. We further present lower and upper bounds for the case of unrestricted star-shaped polygons. Extending the subject into three dimensions, we give a tight bound of (n) on the numb...

متن کامل

Unfolding Convex Polyhedra via Quasigeodesic Star Unfoldings

We extend the notion of a star unfolding to be based on a simple quasigeodesic loop Q rather than on a point. This gives a new general method to unfold the surface of any convex polyhedron P to a simple, planar polygon: shortest paths from all vertices of P to Q are cut, and all but one segment of Q is cut.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2009

ISSN: 0012-365X

DOI: 10.1016/j.disc.2009.04.018